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1 Introduction

The low energy effective theory living on finitely many coincident M2 branes probing the

orbifold singularity R
8/Zk was found in [12]. It is a Chern-Simons theory with gauge

group U(N) × U(N) coupled to matter fields with manifest N = 6 supersymmetry and

SU(4) × U(1) R symmetry. For a given gauge group, the only free parameter is the in-

teger valued Chern-Simons level k. For levels k = 1, 2 the theory has enhanced OSp(8|4)
maximal superconformal symmetry [12, 17–20].

Subsequently a larger class of N = 6 superconformal theories were found for various

gauge groups [13]. We will refer to any N = 6 supersymmetric Chern-Simons-matter

theory as ABJM theory. It is unclear to me whether all these theories correspond to M2

branes probing an R
8/Zk singularity. In any case, for k = 1, 2 all these ABJM theories get

enhanced OSp(8|4) superconformal symmetry.

ABJM theories can also be formulated using a particular class of three-algebras [15]

called hermitian three-algebras. Another type of three-algebra has been found for the

N = 5 supersymmetric theories [16].

The smallest non-trivial ABJM gauge group is SO(4). For this choice of gauge group,

the ABJM lagrangian can be recast in a form that is manifestly OSp(8|4) invariant, which

is then the BLG lagrangian [14] up to a triality of SO(8) R-symmetry indices.

There are mass deformations of BLG and ABJM theories [13, 21, 26] (older works on

mass deformed M2 brane theory are from gravity point of view [27] and from matrix theory

point of view [28]) that preserve all the manifest supersymmetries. For ABJM theories this

means N = 6 supersymmetry. However the SO(6) R symmetry is broken by the mass

deformation to SO(4) × SO(2). For BLG theory the mass deformation preserves N = 8

supersymmetry and breaks the SO(8) R symmetry down to SO(4)× SO(4). It is plausible

– 1 –



J
H
E
P
1
1
(
2
0
0
9
)
0
7
1

that also the above mentioned mass deformed ABJM theories will get enhanced N = 8

supersymmetry for levels k = 1, 2, along with an enhanced SO(4) × SO(4) R symmetry.

For levels k = 1, 2 then, we can in mass deformed ABJM and BLG theories, find a

vacuum solution which preserves N = 8 supersymmetry. Thus

R
1,2 ×

S3
fuzzy

Zk
. (1.1)

The fuzzy three-sphere is described by four matrices Gi of a certain size N ×N [5]. This

construction generalizes the fuzzy two-sphere construction in [1]. In the large N limit we

can map these matrices to the embedding functions T i of a classical three-sphere. These

obey the three-algebra and three-sphere constraint

{T i, T j, T k} =
1

R
ǫijklT l,

T iT i = R2 (1.2)

respectively, for a three-sphere of radius R. The curly three-bracket is the Nambu bracket

as defined in eq. (2.9). (Our general definition is in eq. (3.14)). Since

Kij = {T i, T j, ·} (1.3)

are nothing but the six Killing vectors on the three-sphere generating the rotation group

SO(4), we have a realization of the SO(4) three-algebra which is the smallest non-trivial

three-algebra, and in fact the only possible three-algebra of finite dimension (if we assume

a few requirements which are all very natural from physics point of view). However there

is an infinite dimensional extension of the SO(4) three-algebra, which is generated by any

function on S3 which has a Taylor series expansion

f(T i) =
∞
∑

k=1

fi1...ikT
i1 . . . T ik . (1.4)

Due to the three-sphere constraint on T iT i we only need to consider traceless symmetric

tensors fi1...ik . We could now consider new three-algebra generators

T i1...ik = T i1 · · ·T ik (1.5)

and we find that all these generate an infinite dimensional three-algebra.

In line with these considerations it is natural to also expect that ABJM theory with

gauge group U(N)×U(N), in the large N limit can be mapped into BLG theory which is

realized by a Nambu three-bracket on S3/Zk which should be viewed as an S1/Zk bundle

over S2, so that in particular the large k limit is S2 [3]. As an aside, since BLG theory

is maximally supersymmetric for any k, this means that we should find supersymmetry

enhancement in ABJM theory in the large N limit for any level k.

In this paper we will only study BLG theory with a Nambu bracket on S3. As argued in

the paragraph above, this seems to correspond to taking k = 1 andN = ∞ in ABJM theory.
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Fluctuation analysis

In the spirit of [2, 3], we will obtain the induced theory of small fluctuations about the

maximally supersymmetric three-sphere vacuum solution of BLG theory. If we temporarily

let X collectively denote all the fields in BLG theory, then we expand the mass deformed

BLG lagrangian in small fluctuations around the vacuum. We thus write X = T + δX

where T is the vacuum configuration, and expand the lagrangian as

L(X) = L(T ) + δX
δL
δX

+
1

2
(δX)2

δL
δXδX

+ · · · (1.6)

All derivatives are evaluated at T . If T is a static supersymmetric vacuum, then the

lagrangian is minus the hamiltonian and this is minimized at the supersymmetric vacuum.

Hence the first order derivatives all vanish and we are left with

L(X) = L(T ) +
1

2
(δX)2

δL
δXδX

+ · · · . (1.7)

In a static supersymmetric vacuum we have L(T ) = 0 and we need not write out the

zeroth order term L(T ). However, L(T )(= 0) is invariant only under the unbroken su-

persymmetries. If we do not write out the term L(T ) (since it is zero anyway), then it

looks like the supersymmetry variation of the full action can be found be just computing

the supersymmetry variation of the second order term. This is wrong. Zero need not be

invariant under a variation. We may consider a vacuum in which ψ = 0. This does not

mean that the supersymmetry variation of ψ must also be = 0. In fact the condition for

δψ = 0 defines in this case the unbroken supersymmetries. Since the higher order terms

must cancel the supersymmetry variation of the zeroth order term (because the sum is

equal to L(X) which is the maximally supersymmetric lagrangian), we see that the higher

order terms can not be invariant under the broken supersymmetries either. On the other

hand, the higher order terms must be invariant under the unbroken supersymmetries since

the total lagrangian is invariant, as well as the zeroth order term [10].

Previous work on relating BLG theory with a Nambu three-bracket to M5 brane can be

found in [6–9, 11]. In [11] the Carrollian limit of BLG theory (where the speed of light goes

to zero) with a Nambu bracket was derived from a single M5 in an infinite tension limit.

Since many calculations in our paper are the same as those in [6], we should contrast

those calculations with ours. In [6] the BLG theory is expanded about some background T

in which three scalar fields acquire a non vanishing vev. This background does not provide

any scale parameter which can be used to perform a systematic fluctuation analysis. Instead

the coupling constant 1/k in BLG theory must be used as expansion parameter. This means

that the strong couling regime of BLG theory can not be treated. The connection between

the background T and the internal three-manifold on which the Nambu three-bracket is

to be defined, is left unspecified. Naively the background T in these papers appears to

be non-supersymmetric. However BLG theory also has a shift symmetry of the fermion.

By breaking this shift symmetry one can render the background invariant under modified

BLG supersymmetry variations where one has added a constant shift to the variation of

the fermion [10]. One may then restore the shift symmetry of the fermion (albeit the
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fermion now is located at a shifted value) in BLG theory and find that this shift symmetry

transmutes into a gauge symmetry (a constant shift proportional to the volume form on the

three-manifold) that acts on the background three-form gauge potential C, from the M5

brane brane point of view. For this approach to work one must also specify some condition

on the supersymmetry parameter living on the three-manifold. Perhaps this approach can

be consistent on a flat three-torus appropriately embedded in transverse space, on which

we may have a constant spinor. The connection between the shift symmetry of the BLG

fermion and the gauge variation of the constant background C-field could be interesting

and worth further study. We note that the M2 brane also couples electrically to C but

this field does not seem to alter the BLG theory as long as C is constant, however its field

strength dC has the effect of mass deforming BLG theory [26].

In this paper we instead follow the approach of [2, 3]. We expand about a maximally

supersymmetric three-sphere vacuum solution in mass deformed BLG theory. This back-

ground provides us with a mass parameter that we can use to quantify the smallness of

our fluctuation fields. Hence we can have a small value on k and still have a sensible fluc-

tuation expansion by having a small mass parameter as expansion parameter. Since the

background does not break any supersymmetry we find a maximally supersymmetric M5

brane theory on a three-sphere.

The theory of a single M5 brane is subtle due to the selfdual three-form. On a topolog-

ically non-trivial space-time one can find several different quantum theories of the selfdual

three-form [4]. Consequently the lagrangian of the selfdual three-form can not be unique,

but there must be one lagrangian for each such theory. It seems plausible that this is re-

lated to the fact that one can not write down a manifestly covariant lagrangian [22]. Then

it could be that by making a large diffeormorphism (a diffeomorphism not continuously

connected to the identity) one transforms one lagrangian into another.

2 Infinite-dimensional mass-deformed BLG theory

Our starting point will be BLG theory, realized by a Nambu bracket on some internal

three-manifold M3. One may attempt to define the Nambu bracket using an auxilary three-

manifold on which we have a constant supersymmetry parameter transforming as a scalar.

But if M3 is not embedded in eleven-dimensional space-time and given the uniqueness of M

theory as the only consistent quantum theory in eleven dimensions, it seems plausible that

such a BLG theory would become inconsistent at the quantum level. The next simplest

example is to take M3 to be a flat three-torus embedded in transverse eight-dimensional

space on which we again can have a constant supersymmetry parameter which now trans-

forms as a spinor due to the R-symmetry index being a Weyl spinor of SO(8). The scalar

fields XI are now functions of three parameters θα that parametrize M3 embedded in R
8 as

θα 7→ XI(θ). (2.1)

Then we can at least locally always choose the three coordinates θα to coincide with some

three of the eight scalar fields,

Xα = θα. (2.2)
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From purely geometric considerations we have now obtained a non-vanishing vacuum expec-

tation value of three of the scalar fields! This background is not obviously supersymmetric,

but can presumably be made supersymmetric by also turning on a holonomy on M3. This

example with flat torus embedded in transverse space is the first example one naturally

thinks of if one asks how the Nambu bracket should be defined. This example was analyzed

in [6] though there appears to be a few loose ends that are yet to be understood. It is not

very clear how to assure that fluctuations are governed by a supersymmetric theory, and

seems to require that one turns on a holonomy on M3. It is not clear if this theory arises in

the large rank limit of ABJM theory when expanded about some vacuum in ABJM theory.

A less obvious choice of Nambu bracket and M3 is a three-sphere. However this is the

most natural choice if one instead asks what is a supersymmetric vacuum about which one

can expand BLG theory such that one gets a supersymmetric theory for the fluctuations.

Also it is fairly natural to expect that the three-sphere arises as the large rank limit of

the fuzzy three-sphere vacuum solution in mass deformed ABJM theory at level k = 1.

Since the three-sphere preserves maximal supersymmetry there is no issue regarding how

to maintain supersymmetry in the fluctuation analysis about the three-sphere.

The fuzzy three-sphere is more complicated than the fuzzy two-sphere. It can therefore

be useful to make a comparison between the fuzzy two-sphere and the fuzzy three-sphere.

The fuzzy two-sphere is defined in terms of generators of SU(2) in some N +1 dimensional

representation say, where N can be any positive integer. In the large N limit we can map

these SU(2) generators into the three Killing vectors Ki on S2. These Killing vectors in

turn, can be expressed in terms of the Poisson bracket as

Ki = {T i, ·} (2.3)

where T i describes the embedding of the two-sphere into R
3. The Poisson bracket is defined

using the metric on the two-sphere. These Ki obey the SU(2) algebra as a consequence of

the Jacobi identity.

The obvious generalization to the three-sphere is that in the large N limit, the fuzzy

three-sphere generators are mapped into coordinates T i that describe the embedding of

the three-sphere into R
4. The six Killing vectors on the three-sphere are

Kij = {T i, T j, ·} (2.4)

The Nambu bracket is defined using the metric on the three-sphere. The Killing vectors

then generate the SO(4) Lie algebra as a consequence of the fundamental identity and

eq. (1.2). We note that even though the definition of the discrete three-bracket and matrix

three-algebra generators in ABJM theory has been obtained explicitly [15], it is more

subtle to understand the SO(8) R symmetry in terms of this three-bracket at level k =

1. This necessarily requires proper understanding of monopole operators. Using these

monopole operators we have found that the ABJM three-bracket becomes essentially totally

antisymmetric [17]. This is a promising property if it is to be mapped into a totally

antisymmetric Nambu bracket in the large N limit. But due to the complication of having

to involve monopole operators, we have not yet obtained a rigorous way of taking the large
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N limit of the ABJM theory three-bracket. Taking this large N limit in a rigorous way

will be very interesting and we believe that this will eventually lead to an understanding

of the theory of multiple M5 branes.

In order to allow for other supersymmetric vacua apart from the three-sphere of

mass deformed theory, we will in the rest of this section assume a more generic vacuum

three-manifold and denote its embedding in transverse space as θα 7→ T I(θ). We denote

Minkowski coordinates on R
1,2 as xµ. We introduce normal coordinates xA (A = 1, . . . , 5)

to M3 in R
8. We consider the change of coordinates in R

8

(θα, xA) 7→ xI = xI(θ, xA). (2.5)

The submanifold M3 is located at constant values of xA, that we can set to xA = 0 so that

T I(θ) = xI(θ, xA = 0) (2.6)

defines a parametrization of M3. The induced metric on M3 is given by

gαβ = ∂αT
I∂βT

I . (2.7)

We will also need

gAB = ∂AT
I∂BT

I ,

gAα = 0 (2.8)

on M3. We define the Nambu bracket of three scalar functions f , g and h on M3 as

{f, g, h} =
√
gǫαβγ∂αf∂βg∂γh

= ∗(df ∧ dg ∧ dh). (2.9)

We use the convention that

ǫ123 = 1 (2.10)

and all indices are rised by the inverse metric gαβ . Here the star ∗ denotes the Hodge dual

on M3.

It is very important to stress that the Nambu bracket is calculated with respect to a

background metric associated to a vacuum state. Hence the supersymmetry variation of

the metric is zero. In that sense, BLG theory with a Nambu bracket, appears to make no

sense unless one specifies a non-vanishing vacuum field configuration XI = T I .1 It is true

that the Nambu bracket always satisfies the fundamental identity on any auxiliary three-

manifold. However this is not enough to insure supersymmetry. When checking closure of

supersymmetry one needs to make a second supersymmetry variation of the fermion. This

will involve a term

{ǭΓIψ,XJ ,XK}. (2.11)

1There is the possibility of taking M3 to be outside eleven dimensional spacetime and this gives a BLG

theory at classical level with all the right symmetries, but we do not believe this BLG theory can be

consistent at the quantum level given the uniqueness of M theory.
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In order to secure on-shell closure one needs to be able to rewrite this as

ǭΓI{ψ,XJ ,XK}. (2.12)

The same type of problem arises when checking supersymmetry of the BLG action. In

both cases one has to be able to freely move out the supersymmetry parameter outside

the Nambu bracket. On a generic three-manifold it is not possible to have a covariantly

constant spinor. This means we can not obtain a supersymmetric BLG theory if we de-

fine our Nambu bracket on a generic three-manifold despite the Nambu bracket obeys the

fundamental identity.

We introduce a complete set of functions T a(θ) on M3 that will be our generators for

the infinite-dimensional three-algebra. We expand the matter fields as

XI(x, θ) = XI
a(x)T

a(θ),

ψ(x, θ) = ψa(x)T
a(θ) (2.13)

We define the gauge covariant derivative as

DµX
I = ∂µX

I −Aµ,ab{T a, T b,XI}. (2.14)

We use eleven-dimensional spinor notation since we wish to treat R
1,2 and M3 on the

same footing, and eventually identify R
1,2 ×M3 as the world-volume of M5 brane. The

supersymmetry parameter ǫ and spinor field ψ are subject to the chirality conditions

Γ̃ǫ = ǫ,

Γ̃ψ = −ψ (2.15)

where

Γ̃ = Γ012. (2.16)

We have the following N = 8 supersymmetry variations

δXI = iǭΓIψ

δψ = ΓµΓIǫDµX
I − 1

6
ΓIJKǫ{XI ,XJ ,XK},

δAµ,ab = iǭΓµΓIX
I
[aψb]. (2.17)

closing on-shell,

ΓµDµψ +
1

2
ΓIJ{XI ,XJ , ψ} = 0, (2.18)

D2XI −
i

2
{ψ̄,ΓIJXJ , ψ} − ∂V

∂XI
= 0, (2.19)

Fµν,ab + ǫµνλ

(

XI[aD
λXI

b] +
i

2
ψ̄[aΓ

λψb]

)

= 0. (2.20)

Here

V =
1

12

〈

{XI ,XJ ,XK}, {XI ,XJ ,XK}
〉

(2.21)
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and the trace form is defined as

〈F,G〉 =

∫

d3θ
√
gFG. (2.22)

The matter part of the lagrangian density is

Lmatter = −1

2

〈

DµX
I ,DµXI

〉

− V

+
i

2

〈

ψ̄,ΓµDµψ
〉

+
i

4

〈

ψ̄, {ΓIJψ,XI ,XJ}
〉

. (2.23)

The gauge field part is given by the Chern-Simons term,

LCS =
1

2
ǫµνλAµ,ab∂νAλ,cd

〈

T a, {T b, T c, T d}
〉

+ · · · (2.24)

The cubic interaction term (denoted by the ellipses) in the Chern-Simons action will not

be of any interest to us in this paper.

Mass deformation

There is a mass deformation of BLG theory [21] which does not break any of the supersym-

metries, though it breaks conformal invariance by the introduction of a mass parameter

m. It also breaks SO(8) R-symmetry to SO(4)× SO(4). The embedding of SO(4)× SO(4)

in SO(8) is such that 8v → 4v + 4v. Accordingly we split the vector index I as (i, î). The

mass deformed BLG supersymmetry variations are obtained by modifying the variation of

the fermion by adding the term

δ′ψ = mΓΓIǫX
I (2.25)

Here

Γ =
1

24
ǫijklΓijkl. (2.26)

To maintain a maximally supersymmetric lagrangian, we add the following terms to the

lagrangian [21]

L = −m
2

2

〈

XI ,XI
〉

− im

2

〈

ψ̄,Γψ
〉

−m
6

(

ǫijkl

〈

Xi, {Xj ,Xk,X l}
〉

+ ǫ̂iĵk̂l̂

〈

X î{X ĵ ,X k̂,X l̂}
〉)

. (2.27)

In a background with ψ = 0, the non-trivial condition for unbroken supersymmetry is that

δψ = 0. (2.28)

Assuming that only the four scalar fields Xi are excited and X î = 0, the condition for

unbroken supersymmetry, in a static field configuration, reads

0 =

(

mXi +
1

6
ǫijkl{Xj ,Xk,X l}

)

Γiǫ (2.29)
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This condition does not restrict the supersymmetry parameter. We can write the condition

for the maximally supersymmetric vacuum field configuration as

{Xi,Xj ,Xk} = mǫijklX l. (2.30)

We can solve this equation by taking

XiXi =
1

m2
. (2.31)

that is we find a three-sphere of radius

R =
1

m
. (2.32)

3 Constant spinor and the Nambu bracket

In order to have closure of the BLG supersymmetry variations we must require that the

supersymmetry parameter ǫ is such that

{ǫ,XI ,XJ} = 0 (3.1)

This condition comes from taking a second supersymmetry variation on the fermion and

demanding on-shell closure. Clearly we must extend our definition of the Nambu bracket

to the case where the entries are not scalar entities.

In ABJM theory with gauge group U(N)×U(N) say, for any finite N , apparently the

supersymmetry parameter ǫ is just a constant,

∂M ǫ = 0. (3.2)

However this equation is not covariant, and is written in flat eleven-dimensional Minkowski

coordinates xM . We can write the condition in a covariant way as

DM ǫ = (∂M + ΩM )ǫ = 0 (3.3)

where ΩM is the spin connection. In the infiniteN limit we have a classical three-sphere and

it is then more useful to express the constancy condition in terms of the polar coordinates

xM = xM (xµ, θα, R, xî) (3.4)

for which the metric is given by

ds2 = ηµνdx
µdxν + gαβdθ

αdθβ + dR2 + dxîdxî (3.5)

and we find the following non-vanishing Christoffel symbols,

(

ATα
)γ

β = Γγαβ
(

ANα
)R

β = −gαβ
R

(3.6)

– 9 –
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which we interpret as two gauge fields associated with the tangent bundle and the normal

bundle of the three-sphere respectively. In terms of these coordinates the Killing spinor

equation pulled back to the three-sphere reads2

Dαǫ =

(

DT
α − 1

2R
ΓRΓα

)

ǫ = 0 (3.10)

where DT
α ≡ ∂α + ATα is the intrinsic covariant derivative on the three-sphere. Note that,

since R
1,10 is flat, we have

[Dα,Dβ ] = 0. (3.11)

The Killing spinor equationDαǫ = 0 means that we should define the Nambu bracket as

{ǫ,XI ,XJ} =
√
gǫαβγDαǫ∂βX

I∂γX
J . (3.12)

This definition is crucial for getting closure of the N = 8 supersymmetry. We note that

DαX
I =

∂XI

∂θα
DJX

I = ∂αX
I (3.13)

upon taking the pull back to the three-sphere. It is a bit surprising that a covariant deriva-

tive can act on the XI just as if these were scalar fields since these do actually carry an R

symmetry index and accordingly should rather be viewed as a section of an SO(8) vector

bundle over S3. Let us therefore re-derive this ‘scalar’ field property of the XI also in an

intrinsic way, from the point of view of the three-sphere. On the three-sphere the only

relevant non-vanishing Christoffel symbol ΓRαβ couples to Xβ as DαX
I = ∂αX

I + ΓRαβX
β .

Since there is no field componentXβ in BLG theory we again conclude thatDαX
I = ∂αX

I .

The general definition of the Nambu bracket must then be

{f, g, h} = ∗ (Df ∧Dg ∧Dh) (3.14)

where D denotes the covariant exterior derivative (including the normal bundle gauge

field.3).

2In our conventions

Dα = ∂α +
1

2
ΓaαbM

ab (3.7)

where a is a local flat index and the SO(1, 10) algebra generators Mab are normalized so that

[Mab, M
cd] = −4δ

[c

[aM
b]

d] (3.8)

In vector and spinor representations we then find

(Mab)cd = 2δ
ab
cd ,

M
ab =

1

2
Γab. (3.9)

Here Γaαb = ηacΓ
c
αb = −Γbαa is the Ricci rotation coefficient, or the Christoffel symbol with two indices

converted into flat indices by means of two vielbeins.
3I would like to thank Soo-Jong Rey for pointing out to me that one has to take into account the normal

bundle gauge field
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The real three-algebra is defined by a real three-bracket [·, ·, ·] satisfying the funda-

mental identity. The three-bracket is totally antisymmetric. We also require the existence

of a positive definite trace form 〈·, ·〉 subject to the invariance condition

〈

[T c, T d, T a], T b
〉

+
〈

T a, [T c, T d, T b]
〉

= 0. (3.15)

The only finite-dimensional example is SO(4). We also have infinite-dimensional algebras

realized by the Nambu three-bracket.

We define the associated trace form as

〈f, g〉 =

∫

d3θ
√
gfg. (3.16)

We can expand any function in a complete basis of functions. We denote the basis ele-

ments by

T a = T a(θ). (3.17)

However, tensoring this basis element by an θα-independent spinor or tensor, it is essential

to use the total covariant derivative Dα acting on the quantity. For instance we expand

the BLG spinor in this three-algebra basis as

ψ(x, θ) = ψa(x)T
a(θ) (3.18)

and compute its derivative as

Dαψ(x, θ) (3.19)

even though, of course T a is just a scalar entity, the ψa(x) part carries R-symmetry indices

associated both with space-time, internal three-manifold, and its normal bundle as embed-

ded in eleven-dimensions. It is therefore essential that we use the total covariant derivative

acting on ψ(x, θ). However, on the basis elements T a we act with the ordinary derivative

∂αT
a since the basis functions are scalar quantities that carry no R symmetry indices nor

spacetime indices.

We note that the fundamental identity

{T a, T [b, {T c, T d, T e]}} = 0 (3.20)

is satisfied only if we can use ordinary commuting derivatives. We expand the left-hand

side (defining gǫαβγǫα
′β′γ′ = 6gαβγ,α

′β′γ = gαα
′

gββ
′

gγγ
′±anti-symmetric.)

gǫαβγǫα
′β′γ′DαT

aDβT
[bDγ

(

Dα′T cDβ′T dDγ′T
e]
)

= 6Dγ

(

gαβγ,α
′β′γ′DαT

aDβT
[bDα′T cDβ′T dDγ′T

e]
)

−6gαβγ,α
′β′γ′(DγDαT

a)DβT
[bDα′T cDβ′T dDγ′T

e]

−6gαβγ,α
′β′γ′DαT

a(DγDβT
[b)Dα′T cDβ′T dDγ′T

e]. (3.21)

We see that the last line vanishes only if the derivatives commute.
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We next check the trace invariance condition,
〈

{T c, T d, T a}, T b
〉

+
〈

T a, {T c, T d, T b}
〉

=

∫

d3θgǫαβγ
(

DαT
cDβT

dDγT
aT b + T aDαT

bDβT
cDγT

d
)

=

∫

d3θgǫαβγDαT
cDβT

dDγ

(

T aT b
)

(3.22)

This vanishes only if we can write this as a total derivative. This will be the case in all

cases we will be interested in. This is so because we use the trace form only to get the

lagrangian. Since the lagrangian does not carry any indices we find that the total derivative

is an ordinary derivative. Though if we act by an ordinary derivative on a contraction of

two spinors for example, we find two covariant derivatives as

∂α
(

ψ̄ψ
)

= Dαψ̄ψ + ψ̄Dαψ. (3.23)

Since

DαX
I = ∂αX

I (3.24)

we find that

{XI ,XJ ,XK} =
√
gǫαβγ∂αX

I∂βX
J∂γX

K (3.25)

and we then find that the fundamental identity holds for these scalar fields,

{{X [I ,XJ ,XK},XL],XM} = 0 (3.26)

This is enough to ensure supersymmetry.

4 Computing the induced Lagrangian

On the M5 brane we have a selfdual three-form which implies that there is no diffeo-

morphism invariant classical lagrangian formulation of the theory. However by giving up

diffeomorphism invariance, we can find a lagrangian description. One example is given

in [22] associated to the split of six dimensions into five plus one. Here we find a different

version of such a diffeomorphism non-invariant lagrangian, associated to the split of six as

three plus three. This lagrangian was also studied in [7].

We aim at finding a six dimensional lagrangian by expanding mass deformed BLG

theory about the three-sphere vacuum. We want this six dimensional theory to possess as

much diffeomorphism symmetry as possible.

Six-dimensional fluctuation fields

The eight scalar fields correspond to fluctuations in eight dimensional transverse space. As

we have already mentioned, we find it convenient to change coordinates as

xI 7→ xI(θα, xA) (4.1)
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Then the three-sphere is a level curve, which we may choose to be located at xA = 0,

T I(θ) = xI(θ, 0) (4.2)

We then consider small fluctuations of this three-sphere

δxI(θ, 0) = δθα∂αx
I(θ, 0) + δxA∂Ax

I(θ, 0) (4.3)

For notational convenience, we define

Y I(x, θ) ≡ δxI(x, θ, 0) ≡ XI(x, θ) − T I(x, θ) (4.4)

where we re-instated the xµ dependence as well, to illustrate that these are really six-

dimensional fields. We associate six-dimensional fields to these fluctuations as

δθα = φα

δxA = φA (4.5)

As it turns out, the dual field Bαβ defined as

φα =
1

2

√
gǫαβγBβγ (4.6)

will be identified as components of a gauge potential in the M5 brane.

We define the remaining gauge field components Bµα as

Aµ,abT
a∂αT

b = Bµα (4.7)

It is not clear whether this relation can be inverted so as to express Aµ,ab in terms of Bµα.

Since our goal is to derive the M5 from M2 we will not need to invert this relation for our

immediate purposes. However if we were to derive M2 from M5 it seems we would need to

invert this relation.

We first show that Bαβ and Bµα defined as above can really be identified as compo-

nents of a two-form gauge potential in a six-dimensional theory, by showing that a gauge

variation in BLG theory induces a gauge variation of these two-form components. A gauge

transformation in BLG theory is given by

δXI = Λab(x){T a, T b,XI},
δAµ,ab = DµΛab(x). (4.8)

To linear order we find the induced gauge variations

δBαβ = ∂αΛβ − ∂βΛα,

δBµα = ∂µΛα − ∂αΛµ,

δφA = 0, (4.9)

with gauge parameter

Λα = ΛabT
a∂αT

b,

Λµ = 0. (4.10)
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We note that

DαBµβ = DT
αBµβ (4.11)

since there is no component BµR. Also, then we have as usual that

DαBµβ −DβBµα = ∂αBµβ − ∂βBµα. (4.12)

If we define

Bαµ = −Bµα (4.13)

then we define the field strength components as

Hµαβ = ∂µBαβ + ∂αBβµ − ∂βBαµ,

Hαβγ = ∂αBβγ + ∂γBαβ + ∂γBαβ . (4.14)

To show that the action is supersymmetric we need Bianchi identities

D[αHβγδ] = 0

D[αHµβγ] = 0

D[αHµνβ] = 0 (4.15)

where we define

Hµνα = ∂µBνα − ∂νBµα. (4.16)

The supersymmetry parameter ǫ and spinor field ψ in BLG theory are subject to

chirality conditions

Γ̃ǫ = ǫ

Γ̃ψ = −ψ. (4.17)

These Weyl conditions are not six-dimensional. The ‘chirality matrix’ associated with the

three-manifold is given by

Σ =
1

6
ΓIJK{T I , T J , TK}

=
1

6

√
gǫαβγΓαβγ . (4.18)

This matrix has the anti-properties

Σ† = −Σ,

Σ2 = −1 (4.19)

but when combined with the SO(8) chirality matrix Γ̃, we find a true (six-dimensional)

chirality matrix

Γ̃Σ. (4.20)
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We would like to find new spinors ω and χ respectively, such that these are subject to the

Weyl conditions

Γ̃Σω = −ω
Γ̃Σχ = χ (4.21)

which are of a six-dimensional covariant form. We find these conditions by making the

unitary rotation

ǫ = Uω

ψ = Uχ (4.22)

with

U =
i√
2
Γ̃(1 − Σ). (4.23)

Scalar matter part. The scalar matter field part is

L = Lkin + Lpot (4.24)

where

Lkin = −1

2

〈

DµXI ,DµX
I
〉

Lpot = − 1

12

〈

{XI ,XJ ,XK}, {XI ,XJ ,XK}
〉

− m2

2

〈

XI ,XI
〉

−m
6
ǫijkl

〈

Xi{Xj ,Xk,X l}
〉

− m

6
ǫîĵk̂l̂

〈

X î{X ĵ ,X k̂,X l̂}
〉

. (4.25)

To zeroth order in fluctuation fields, we find that

L = − 1

12

〈

{T i, T j , T k}, {T i, T j , T k}
〉

− m2

2

〈

T i, T i
〉

− m

6
ǫijkl

〈

T i, {T j , T k, T l}
〉

= −1

2
− 1

2
+ 1 = 0. (4.26)

This being zero reflects the fact that the three-sphere solution is a supersymmetric ground

state.

To first order we find

L = −1

2

〈

{T i, T j , T k}, {T i, T j, Y k}
〉

−m2
〈

T i, Y i
〉

− 2m

3
ǫijkl

〈

Y i, {T j , T k, T l}
〉

= (−3 + 4 − 1)m2
〈

T i, Y i
〉

= 0. (4.27)

This being zero means that the three-sphere is a solution to the classical equation of motion.

The first non-vanishing contributions starts at quadratic order. There will be higher

order corrections but these are suppressed by an order of 1/R and can be ignored by taking

R sufficiently large. In this paper we will compute only up to quadratic order.
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We start by computing the kinetic term. First we compute

DµX
i =

1

2

√
gǫαβγHµαβ∂γT

i + ∂µφ
R∂RT

i,

DµX
î = ∂µφ

î. (4.28)

and consequently we get

Lkin = −1

4
HµαβH

µαβ − 1

2
∂µφ

A∂µφA. (4.29)

We next expand the potential term,

Lpot = −1

2

〈

{Y i, Y j , T k}, {T i, T j , T k}
〉

−1

2

〈

{T i, T j, Y k}, {Y i, T j , T k}
〉

−1

4

〈

{T i, T j , Y K}, {T i, T j, Y K}
〉

−m
2

2

〈

Y I , Y I
〉

−mǫijkl
〈

Y i, {Y j , T k, T l}
〉

. (4.30)

We may use the trace invariance condition and the fundamental identity and get the identity

〈{a, b, c}, {e, f, g}〉 = 3 〈{f, g, c}, {e, a, b}〉 (4.31)

where the right-hand side is to be antisymmetrized in e, f, g. Using this we can bring the

lagrangian into the form of a sum of two terms,

Lpot = LI + Lm (4.32)

where

LI =
1

2

〈

{T j , T k, Y k}, {T j , T i, Y i}
〉

− 1

4

〈

{T i, T j , Y K}, {T i, T j, Y K}
〉

Lm = −m
2

2

〈

Y I , Y I
〉

. (4.33)

We then note that4

gαβ∂αT
i∂βT

j = δij − T iT j

R2
(4.35)

and we get

LI = −1

2

∫

d3θ
√
g

(

gγγ
′ T kT k

′

R2
+ gγβ

′

gγ
′β∂βT

k∂β′T k
′

)

∂γY
k∂γ′Y

k′

−1

2

∫

d3θ
√
ggγγ

′

∂γY
k̂∂γ′Y

k̂,

4To see this we note that any vector in R
4 can be written as

v
i = aT

i + b
α
∂αT

i
. (4.34)

Then the identity can be proved by acting by both sides on this vector. We may also note the operator is

a projector.
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Lm = −m
2

2

∫

d3θ
√
g
(

Y iY i + Y îY î
)

(4.36)

We now proceed by inserting the expansions in terms of fluctuation fields defined as

in eq. (4.3), which we repeat here,

Y i =
T i

R
φR + φα∂αT

i,

Y î = φî (4.37)

From this it follows that

∂αY
i =

1

R
(∂αT

i)φR +
T i

R
∂αφ

R + (DT
αφ

β)∂βT
i + φβDT

α∂βT
i. (4.38)

We have noted that ∂αT
i transform as four vectors (one for each fixed value of i) on

the three-sphere, or equivalently, that φα∂αT
i are four scalars on S3. Consequently

∂α(φβ∂βT
i) = (DT

αφ
β)∂βT

i + φβDT
α∂βT

i. We then note that5

DT
α∂βT

i = − 1

R2
gαβT

i (4.39)

on S3.

The main point in this paper is to express everything in terms of total derivatives. We

motivate this by the fact that the supersymmetry parameter is constant only with respect

to the total derivative. By noting that the only non-vanishing Christoffel symbols in our

polar coordinate system are

Γγαβ ,

ΓRαβ = −gαβ
R

ΓαβR =
1

R
δαβ (4.40)

We find that

Dαφ
β = DT

αφ
β +

1

R
δβαφ

R,

Dαφ
R = ∂αφ

R − 1

R
φα,

Dαφ
î = ∂αφ

î. (4.41)

Using all this, we find that

∂αY
i = (Dαφ

β)∂βT
i +

T i

R
Dαφ

R. (4.42)

Inserting this into Lpot we find the result

Lpot = −1

2
Dαφ

βDβφ
α − 1

2
gαβDαφ

ADβφ
A

− 1

2R2
φAφA − 1

2R2
gαβφ

αφβ . (4.43)

5The left-hand side is symmetric. Hence one can suspect the result be proportional to gαβ (or to the

Ricci tensor, but these are proportional on S3). The normalization is then fixed by computing T iDT
α ∂βT i =

−∂αT i∂βT i = −gαβ where we used the three-sphere constraint T iT i = R2 to move one derivative.
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The placements of the derivatives in the first term looks funny and a naive guess could be

that this is something ugly and unwanted. But in fact this precise juxtaposition of the two

derivatives turns out to be crucial for getting a gauge invariant action. We can not make

integration by parts using Dα since it does not lead to a total derivative. We rather have

that a total derivative (which vanishes upon integration over closed three-sphere) is given by

∫

d3θ
√
gDT

αV
α =

∫

d3θ∂α(
√
gV α). (4.44)

So we must express everything in terms of the intrinsic covariant derivative DT
α before we

can make integrations by parts. We then find

Dαφ
βDβφ

α = DT
αφ

αDT
β φ

β + φβ[DT
α ,D

T
β ]φα

+
2

R
φRDT

αφ
α +

3

R2
(φR)2 (4.45)

On a three-sphere of radius R we have

[DT
α ,D

T
β ]φα =

2

R2
φβ . (4.46)

If then, we also expand out the other non-trivial term in Lpot, which is

− 1

2
Dαφ

RDαφR = −1

2
DT
αφ

RDTαφR − 1

R
φRDT

αφ
α − 1

2R2
φαφα (4.47)

then we find that the mass term φαφα exactly cancels out in LH , and we end up with

LH = −1

2
DT
αφ

αDT
β φ

β − 1

2
DT
αφ

ADTαφA

− 3

2R
φRDT

αφ
α − 3

2R2
(φR)2 − 1

2R2
φAφA (4.48)

Chern-Simons term. From the Chern-Simons term

LCS =
1

2
ǫµνλAµ,ab∂νAλ,cd

〈

T c, {T b, T c, T d}
〉

(4.49)

we get

LCS =
1

2
ǫµνλgǫαβγ∂αBµβ∂νBλγ (4.50)

Fermionic part. The fermionic part is

i

2

〈

ψ̄,ΓµDµψ
〉

+
i

4

〈

ψ̄,Γij{T i, T k, ψ}
〉

− im

2

〈

ψ̄,ΣΓRψ
〉

. (4.51)

We expand the second term

i

4

〈

ψ̄,Γij{T i, T k, ψ}
〉

=
i

2

〈

ψ̄,ΣΓαDαψ
〉

. (4.52)

We then make the field redefinition

ψ = Uχ,
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ψ̄ = χ̄V (4.53)

and we get

i

2
〈χ̄,Γµ∂µχ〉 +

i

2
〈χ̄,ΓαDαχ〉 −

i

2R
〈χ̄,ΣΓRχ〉 . (4.54)

To get here we have used that

DαΣ = 0. (4.55)

The induced Lagrangian

Summing up all the various contributions, the resulting induced six dimensional action

that we obtain up to quadratic order, is given by

S =

∫

d3xd3θ
√
g (LH + Lφ + Lψ) (4.56)

where

LH = − 1

12
gαβγ,α

′β′γ′HαβγHα′β′γ′ −
1

4
ηµµ

′

gαβ,α
′β′

HµαβHµ′α′β′

−1

2
ǫµνλǫαβγ∂βBµα∂νBλγ −

1

4R
ǫαβγφRHαβγ , (4.57)

Lφ = −1

2

(

∂µφ
A∂µφA + gαβDT

αφ
ADT

β φ
A
)

− 1

2R2
φAφA − 3

2R2
φRφR (4.58)

Lψ =
i

2
χ̄Γµ∂µχ+

i

2
χ̄ΓαDT

αχ+
i

4R
χ̄ΣΓRχ. (4.59)

For Lψ we have used

Dαχ = DT
αχ+

1

2R
ΓRΓαΣχ. (4.60)

This follows from eq. (3.10) if one notes that DαΓβ = 0 and DT
αΓβ = 0. The first condition

follows by requiring that Vβ = ψ̄1Γβψ2 transforms like a vector for any two BLG spinors

ψ1,2. The second condition can be seen by requiring

DαVβ = DT
αVβ +

1

R
gαβVR (4.61)

If we assume that DαΓβ = 0 then we get

DαVβ = (Dαψ̄1)Γβψ2 + ψ̄1ΓβDαψ2 (4.62)

We expand Dαψ1,2 = DT
1,2ψ1,2 − 1

2RΓRΓαψ1,2, and we get

DαVβ = (DT
α ψ̄1)Γβψ2 + ψ̄1ΓβD

T
αψ2 +

1

R
gαβVR (4.63)
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and this equals DT
αVβ + 1

RgαβVR only if

DT
αΓβ = 0. (4.64)

Using this, and also

Dαgβγ = 0,

DT
αgβγ = 0 (4.65)

which can be seen as a consequence of DαΓβ = 0 = DT
αΓβ, or it can be derived direcctly

as Dαgβγ = DT
αgβγ + ΓRαβgRγ + .. = DT

αgβγ since gRα = 0 by our choice of coordinates. Of

course DT
αgβγ = 0 is the familiar metric compatibility condition. Taken this together we

conclude that

DαU = 0,

DT
αU = 0 (4.66)

where U is defined as in eq. (4.23). we then get for any BLG spinor ψ related to χ as

χ = Uψ, ψ = −Uχ,

Dαχ = UDαψ

= DT
αχ+

1

2R
UΓRΓαUχ

= DT
αχ+

1

2R
ΓRΓαΣχ (4.67)

as asserted.

We note that the equation of motion for the two-form Bµα becomes a total deriva-

tive [7]. If then we vary ∂βBµα, rather than Bµα, then we find the equation of motion

∂µBνα − ∂νBµα = −
√
g

2
ǫµνλǫαβγH

λβγ (4.68)

This is the same equation of motion as we get directly from the BLG equation of mo-

tion eq. (2.20) by inserting our fluctuation expansion. To see this we first we contract

eq. (2.20) by T a∂αT
b and then insert the fluctuation field expansions into the resulting

equation of motion. We also note the three-sphere constraint T iT i = R2 which implies

that T iDλ∂αT
i = −∂αT iDλT i.

The gauge field part of the lagrangian, LH , was also obtained in [6] and further studied

in [7].

5 Induced supersymmetry

To get the supersymmetry variations we can expand the mass deformed BLG supersymme-

try variations to linear order in the fluctuations. At zeroth order we have δT I = 0. There

are no ‘higher order’ contributions to the variation T I since the higher order variations

sit in the fluctuation fields Y I ≡ XI − T I . At linear order we find the supersymmetry

variations for the fluctuations as

δY I = iǭΓIψ,
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δψ = ΓµΓIǫ∂µT
I +mΣΓRΓIǫT

I − Σǫ

−ΓµΓIǫAµ,ab{T a, T b, T I} + ΓµΓIǫ∂µY
I

−1

2
ΓIJKǫ{Y I , T J , TK}

+mΣΓRΓIǫY
I ,

δAµ,ab = iǭΓµΓIT
I
[aψb] (5.1)

We can cancel the zeroth order contribution in δψ by taking T I to lie on a three-sphere of

constant radius R = 1/m. With this choice of radius we preserve maximal supersymmetry

and the first line above in δψ vanishes.

Supersymmetry variations of the Bosons. From δY I = ıǭΓiψ we get

δφA = iω̄ΓAχ (5.2)

and

δBαβ = iω̄Γαβχ (5.3)

and from δAµ,ab we get

δBµα = iω̄ΓµΓαχ+ ∂αλµ (5.4)

where

λµ =
i

2
ǭΓµΓRψ (5.5)

is a gauge parameter. We also note that

λα =
i

2
ǭΓαΓRψ ≡ 0 (5.6)

so this is really a six-dimensional gauge parameter.

Supersymmetry variation of the Fermions. We insert the expansion eq. (4.3) and

eq. (4.7) and get

δψ = ΓµΣΓαβǫ∂αBµβ + ΓµΓαǫ∂µφ
α − ΣǫDαφ

α

+ΓµΓAǫ∂µφ
A − ΓAΣΓαǫDαφ

A

+
1

R
ΣΓRΓAǫφ

A − 2

R
ΣΓRΓαǫφ

α (5.7)

We then dualize φα into Bαβ and make a unitary rotation by means of the matrix U to

gain six-dimensional covariance. We then get

δχ =
1

2
ΓµΓαβHµαβ +

1

6
ΓαβγωHD

αβγ

−ΓµΓAω∂µφ
A − ΓαΓAωDαφ

A

− 1

R
ΣΓRΓAωφ

A +
1

2R
ΣΓRΓαβωBαβ. (5.8)
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where we introduced

HD
αβγ = DαBβγ +DγBαβ +DβBγα

= Hαβγ +
1

R

√
gǫαβγφ

R (5.9)

In terms of DT
α derivatives we then find the result

δχ =
1

2
ΓµΓαβHµαβ +

1

6
ΓαβγωHαβγ

−ΓµΓAω∂µφ
A − ΓαΓAωD

T
αφ

A

− 1

R
ΣΓRΓAωφ

A +
1

R
ΣωφR. (5.10)

These supersymmetry variations must close on-shell on Lie derivatives on R
1,2 × S3, the

SO(4) ⊂ SO(5) R-symmetry that keeps φR fixed, and a gauge variation as these are the

bosonic symmetries of the action.

6 Open problems

By taking k large we reduce S3 to S2 by shrinking the Hopf circle k times due to the

Zk orbifold identification, and the M5 brane wrapped on S3 reduces to D4 wrapped on

S2. In would be interesting to demonstrate this explicitly in our abelian theory and make

connection to [3]. Also since we know the nonabelian D4 brane theory this can give a hint

of the nonabelian M5 brane theory.

One may consider more general mass deformations that still preserve maximal super-

symmetry [26]. It would be interesting to see what M5 brane theories these correspond to.

We may also get less supersymmetric six-dimensional theories by expanding BLG theory

about less supersymmetric backgrounds, such as has been classified in [25]. In particular

one can consider the half BPS funnel solution [24] of M2’s ending on M5 and find a six

dimensional theory with eight supercharges on curved manifold of the geometry of a funnel.

The right way to discretize the BLG theory with a Nambu bracket should be to consider

ABJM theory. Needless to say it will be very interesting to derive BLG theory on S3/Zk
by taking the large N limit of mass deformed ABJM theory at level k. For k = 1, 2 we can

indeed see the fuzzy three-sphere (mod Z2) in ABJM theory. Only for levels k = 1, 2 do we

have enhanced SO(8) R symmetry in ABJM theory for generic gauge groups. In this case

we can find a fuzzy funnel solution that is locally a fuzzy three-sphere. We have not yet

verified that a similar type of enhancement works also for the mass deformed ABJM theory

eventhough this seems very plausible, so let us demonstrate how the fuzzy funnel solution

arises. For levels k = 1, 2 we have showed in [17] that the supersymmetry variation of the

fermion in ABJM theory can be written as (using the same notations as in that paper)

δψ = ΓµΓIǫDµX
I − 1

6
ΓIΓJΓKǫ[X

I ,XJ ;XK ]. (6.1)

Moreover we can antisymmetrize IJK despite the three-bracket is only manifestly anti-

symmetric in its first two entries. This follows from the identity

XI
bX

J
c X

Kdf bcda = XK
b X

[I
c X

J ]df bcda (6.2)
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We then find that

ΓIJ [X
I ,XJ ;XK ]a ≡ ΓIJX

I
bX

J
c X

Kdf bcda
= ΓIJX

K
b X

I
cX

Jdf bcda
= −ΓIJX

I
bX

K
c X

Jdf bcda (6.3)

Hence the bracket can be antisymmetrized in I, J,K when contracted by ΓIJ . From here

we can then derive the Basu-Harvey fuzzy three-sphere funnel solution [24] by requiring

δψ = 0. For level k = 2 the Z2 orbifolding is just XI ∼ −XI that comes from ZAa ∼
−ZAa = eiπZAa . The relation between XI

a and ZAa involves a Wilson line Wab and the

higher k orbifolding ZAa ∼ e2πi/kZAa has no such simple counterpart for the XI
a . Also

the Wilson line becomes non-local and it is unclear to us whether one can find a fuzzy

three-sphere mod Zk also for higher levels k.

In [9] it was demonstrated how the Nambu-Goto action for a five-brane can be re-

formulated as a BLG type of theory with a Nambu three-bracket. It will be interesting

to generalize this approach to the full-fledged kappa symmetric M5 brane action [23] and

derive (mass deformed) BLG theory from this action.

In principle the theory of multiple M5 branes should also be encoded in some ABJM

theory. It would be very interesting to see if one can compute any quantity in the multiple

M5 brane theory from ABJM theory. For finite rank gauge groups we would expect to find

a non-commutative, and perhaps also non-abelian, M5 brane.
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A Gamma matrix relations

For the matrices

U =
i√
2
Γ̃(1 − Σ),

V = − i√
2
(1 − Σ)Γ̃. (A.1)

we have used the following identities,

UΣΓRΓαU = ΓRΓα
UΓµΣΓαβU = ΓµΓαβ

UΓαβγU = Γαβγ

UΓµΓAU = ΓµΓA
UΓαΓAΣU = ΓαΓA

UΣU = Σ. (A.2)
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and

V ΓµU = Γµ,

V ΣΓαU = Γα,

V ΓµΓαU = −ΓµΓα,

V ΓAU = −ΓA,

V ΓαU = ΓαΣ

V ΣΓαβU = −Γαβ. (A.3)

Our gamma matrices are subject to the algebra

{Σ, Γ̃} = 0,

{Γµ,Σ} = 0,

[Γα,Σ] = 0,

{ΓA,Σ} = 0,

[Γµ, Γ̃] = 0,

{Γα, Γ̃} = 0,

{ΓA, Γ̃} = 0,

{Γµ,Γα} = 0,

{Γµ,ΓA} = 0,

{Γα,ΓA} = 0. (A.4)

and duality relations

ΣΓγ =
1

2

√
gǫαβγΓαβ,

Γγ = −1

2

√
gǫαβγΣΓαβ,

Γγ = −1

2

√
gǫαβγΣΓαβ,

Γγǫ
αβγ = − 1√

g
ΣΓαβ. (A.5)
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